
Tr

NASA Contractor Report 187440

ICASE Report No. 90-67

00

ICASE
A "CONSERVATIVE" APPROACH TO PARALLELIZING
THE SHARKS WORLD SIMULATION

David M. Nicol
Scott E. Riffe

Contract No. NAS 1-18605
October 1990

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

DTIC
w-" ELECTE llh

flJASA OICT23NIlinnal Aprnni nr t ndSo,,ir Afdrninicfrilion

tantley Re.earch Center
I fmrphn, Virginia 23665-5225

Apr9wved for public rl e, ;

tuibnution Unfltd

A "Conservative" Approach to Parallelizing
the Sharks World Simulation

David M. Nicol

Scott E. Rifle

College of William and Mary

-, ABSTRACT

This paper describes how we parallelized a benchmark problem for parallel simulation,

the Sharks World. The sol tion we" escribe is conservative, in the sense that no state

information is saved, and no 'rollbacks '' occur. Our approach illustrates both the principal

advantage and principal disadvantage of conservative parallel simulation. The advantage

is that by exploiting lookahead we find an approach that dramatically improves the serial

execution time, and also achieves excellent speedups. The disadvantage is that if the model

rules are changed in such a way that the lookahead is destroyed, it is difficult to modify the

solution to accommodate the changes.

*Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. Research also supported
in part by NASA grant NAG-1-1060 and by NSF Grant ASC 8819373.

1Ii l

1 Introduction

The Sharks World simulation was proposed in early 1990 as a testbed problem for studying
issues in parallel simulation [1]. Following that proposal, we were invited to participate in
a 1990 Winter Simulation Conference session devoted to different methods for attacking the
Sharks World problem. We were asked to write a paper that emphasizes the process by
which the problem was parallelized using some sort of conservative synchronization. Our
background in parallel simulation has largely been in showing how to extract lookahead
(the ability of a simulation model element to predic, its future behavior) which can then be
exploited by any conservative method. Indeed, our thesis has long been that conservative
synchronization protocols ought to be tailored to the specifics of the problem [5].

The Sharks World is a conceptually simple simulation designed to capture many of the
salient features of more complex physical models, such as the colliding hockey pucks problem
[2]. The Sharks World has a torodal topology, and is populated with two species: sharks,
and fish. A creature moves at a fixed velocity, and a fixed direction; velocity and direction
may vary from creature to creature. A shark will eat any fish that strays within a distance
A of the shark. The fish disappears from the simulation, but the shark's course remains
unaltered.

This problem's principle difficulty lies in the comj.lexity of determining potential inter-
actions. When a fish and shark are relatively close in the domain one may easily enough
determine if and when the shark could eat the fish. However, there is no guarantee that the
fish will make the rendezvous, as it may be consumed by a different shark at an earlier time.
As we will see, the solution proposed in [1] involves a certain amount of event cancelling to
retract falsely anticipated interactions.

Lookahead is absolutely essential to achieve good performance using any conservative
synchronization method. Our past methods for lookahead computation relied on techniques
such as the pre-sampling of random variables [3], and exploitation of non-preemptive queue-
ing disciplines [4]. Identification of lookahead tends to be problem-class specific. When we
accepted the challenge to parallelize the Sharks World, we accepted the responsibility to find
lookahead in a type of problem we had not yet considered. Indeed, finding that lookahead
proved to be the most important aspect of our solution approach.

This paper chronicles our efforts. We began by developing a baseline serial simulation
along the lines suggested in [1]. The purpose of this simulation was to develop a better
understanding of the problem, and to provide a benchmark for the eventual parallel simula-
tion. In our implementation all distance and time quantities are taken to be real numbers.
This is a minor deviation from the simulation described in [1] where distance and time are
discretized. A discretized approach is at variance with inherently real quantities involved
in movement calculations-sines and cosines for example. Next we pondered the simulation
problem, looking for exploitable lookahead. Once the lookahead was identified we wrote
a new serial simulation which emulates the eventual parallel simulation. The advantage
of this intermediate step is that workstations provide a far better development and debug-
ging environment than does almost any parallel system. The new serial simulation employs a

1

different computational paradigm than the original Sharks World simulation, and on a work-
station implementation runs over twenty times faster than the baseline simulation. Having
thus validated the lookahead ideas we parallelized the new serial code. The parallelization
was straightforward-it required only two hours to parallelize, debug, and validate the first
parallel version.

This paper is organized as follows. §2 outlines the original sectoring paradigm proposed
in [1], and the different approach we adopt. §3 describes our method in more detail, and
explains its parallelization. §4 addresses performance, and §5 presents our conclusions.

2 Overview of Solution Methods

Our approach to the problem is different than the one outlined in [1]. As a point of compar-
ison we briefly outline the original simulation strategy, and then our own.

2.1 Original Method

The Sharks World is partitioned into sectors. There are two types of simulation events:
Change-Sector, and Attack-ish. The former occurs when a fish or shark passes from one
sector to another. The latter occurs when a shark attacks a fish. A rough sketch of the
basic event processing follows. In the interests of readability, a number of details have been
suppressed.

Change-Sector Suppose a creature is entering sector c. Determine the identity of the next
sector the creature will enter if it manages to pass through c unharmed, and determine
the time t, at which it would leave c. Schedule another Change-Sector event for the
creature, at time tc. Finally, call a routine NewAttackTimes (). If the entering creature
is a fish, this routine computes the minimal next-attack-time (if any) from among all
sharks presently able to attack sector c. If the entering creature is a shark the routine
computes its next attack time on every fish currently in sector c, possibly re-scheduling
an Attack-Fish event as a result.

Attack-Fish Cancel the event where the fish leaves the sector. Remove the fish from the
simulation. Call a routine NextKillTime() to reschedule the time of the next shark
attack in the sector.

The basic idea behind sectoring is to limit the number of shark-fish interactions that
have to be considered in NextKillTime(). One chooses (squate) sectors that are at least
as large in both dimensions as the distance A at which a shark may attack a fish. Then at
any given simulation time t, the set of sharks that are able to attack a given fish must reside
within one sector's distance of the fish. When computing the time of the next attack in the
scctor one need consider only the sharks that are close enough to the sector. Alternately,
one permits smaller sectors but extends the search for sharks to any sector within distance
A.

2

Computation of the next attack in a sector c has time complexity O(FcSr), where Fc is
the number of fish presently in the sector and Sc is the number of sharks that can attack
fish in c. Therefore, as the sector size decreases the complexity of each NextKil1Tme() call
decreases. However, because there are more sectors the total number of such calls increases,
and the number of Change.Sector events also increases. One must empirically determine the
sector size that optimally manages this tradeoff. A complexity analysis given in §4 qualifies
this tradeoff.

2.2 Starting Over From Scratch

A conservative solution method must find and exploit lookahead. The basic problem with
the Sharks World simulation is that after we schedule a Change-Sector event for a fish, the
fish may later be consumed by a fast-moving shark whose future presence was unknown at
the time we scheduled the Change-Sector event for the fish. Where then is the lookahead?

After much deliberation (and a few false starts), we noticed the most obvious of lookahead
properties: a shark's position at any future time t can be exactly predicted. For that matter,
one can predict the future position of any fish at time t, provided that it is alive at time t.
Our first thought was to use the basic sectoring approach, but then continuously "project"
shark positions far enough into the future so that whenever a fish enters a sector, all sharks
that could possibly attack it during its duration in that sector are already known. We can
then accurately compute whether the fish manages to escape the sector, or is eaten (and by
whom). If we determine that it escapes we can confidently report its departure to the next
sector in its path. Indeed, this is a viable conservative approach to the problem. However,
there is a simpler and faster method.

Given the specifications for a simulation, one typically attempts to determine the most
efficient way to implement the simulation. When implementing conservative parallel simu-
lation one has to trust that the problem specifics wili not change, for within the problem
specifics one finds the needed lookahead. In a commercial setting there is a very real danger
that mid-way through development a customer will change the problem specifics. This c.an
spell disaster for a conservative approach, for the changes may destroy the lookahead -round
which the simulation is designed. The Sharks World simulation is an excellent exa:nple of
this phenomenon.

The object of the Sharks World simulation is to determine the time, positior, and cause of
each fishes' demise. Now the trajectories of the sharks and fishes are comple~cly determined
by their initial positions, directions, and velocities. In theory we can compute the intersection
of a fishes' trajectory with a shark's trajectory. By considering all the sharks, we can
determine the earliest time at which a shark attacks the fish. The only problem is computing
the trajectory intersections. The section to follow will show how this can be efficiently done. [3

The "back-to-basics" approach has many advantages. We will see that it runs over twenty
times faster on a Sun Sparc 1+ workstation than does the secooring simulation. We will also
see that parallelization is trivial, and that excellent speeiups are achieved. It is hard to
dismiss these advantages. But consider any minor modification to the rules that permit a

-ideS
Avail and/or

31-it ISpeolal

' II'|

creature's trajectory to change: as a consequence the lookahead properties are changed, and
the entire approach has to be reworked. Herein lies the dual nature of conservative parallel
simulation.

3 The Time-sliced Intersection Projection Algorithm

The Sharks World problem asks that we determine which fish are consumed within a time
interval [0, T], the time, location, and cause of their consumption. If we can efficiently
determine the earliest attack time between every fish and shark, the most straightforward
way to solve this problem is to compute the minimum attack time (if any) on every fish.
We call this intersection projection, owing to its implicit projection of creature positions
far into the future. We will actually employ intersection projection over different time-
slices of the simulation, yielding the name Time-sliced Intersection Projection, or simply
TIP. This section describes TIP, its underlying method for projecting intersections, and its
parallelization.

3.1 Projections and Time-Slices

The intersection projection algorithm can be thought of as a doubly nested loop. Certain
efficiencies are achieved if the inner loop runs over sharks, while the outer loop runs over fish.
For, within the inner loop, we may maintain the least kill time tkill known so far for the fish
fixed as the outer loop variable. Each successive inner loop iteration (i.e., for each successive
shark) we need only look for interactions with the fish within the interval [0, tkil]-any later
interaction will not occur-thereby reducing the workload somewhat. The order in which
we compare sharks with a given fish has a great deal to do with the savings we achieve.
Consider a fish that is eaten by some shark So early in the interval and would interact (if it
had lived) with another shark S1 late in the interval. If we compute the interaction with S1
first we project both the shark and fish through most of [0, T] before finding the interaction.
If instead we had computed the interaction with So first, we would have been able to cut
the projection with S1 well short of T.

One way to avoid unnecessary projection is to use time-slices. Divide [0, T] into subin-
tervals of width At. We start by computing all interactions between sharks and fish over
[0, At]. Any fish that is consumed in this interval is removed from the fish list. The positions
of all remaining creatures are then projected forward to time At, and we repeat the process
over subinterval [At, 2At]. We call this Time-sliced Intersection Projection, or TIP. TIP has
the advantage of limiting unnecessarily long projections, and of reducing the number of fish
involved at each subinterval. It does suffer the additional cost of "moving" each creature
at the end of a subinterval, and creates the problem of deciding how large At ought to be.
Informal experimentation with our code showed that approximately a factor of two gain in
performance over no time-slicing was achieved using At = T/10. This rule was employed in
the experiments reported in §4.

4

3.2 Intersections in a Torodal World
We wish to determine when a given fish and a given shark are close enough for the shark to
consume the fish. The problem is complicated by the fact that both the fish and shark may
complete many circuits of the Sharks World before meeting. The solution we present here
efficiently deals with this problem.

Let (x1(t),y 1 (t)) be the position of the fish at time t, Of be its angle of direction and
let v! be its velocity. Similarly define (x,(t), y,(t)), 0,, and v, for the shark. If the fish and
shark are to be within distance A, they must be within distance A in each coordinate. Our
approach is to determine the functional form of all epochs when the fish and shark coincide
in x, and the functional form of epochs when they coincide in y. Around each epoch there
is a window within which the fish and shark coordinates differ by no more than A. We look
for the intersection of windows around x epochs and windows around y epochs.

For the purposes of description, view the behavior of creatures' x-coordinates, (xf(t) and
X,(t)), as particles on a ring of length M. xf(t) moves with velocity vf cos of, and x,(t) moves
with velocity v, cos 0,; the sign of a velocity indicates the particle's direction (clockwise or
counter-clockwise). Without loss of generality assume that the magnitude of xf(t)'s velocity
is larger than the magnitude of x,(t)'s velocity. If the two particles are moving in the
same direction xf(t) overtakes x,(t) at relative velocity vx, = Ivf cos Of- v, cos0,1; in other
words, after their first meeting x1 (t) and x,(t) coincide every P, = M/v.7 units of time.
If the particles move in opposite directions they approach each other at relative velocity
Vx = Ivf cos Of + Iv, cos 0,1, and meet every P, = M/v,, units of time. The time lapse T,
until their first meeting is easily determined from the particles' initial positions. Thus, the
particles exactly coincide at all epochs

tk = T. + kP, for k = 0, 1,2,....

It takes time I., = A/v,, for the two particles to close from a distance A apart. For every
epoch t k the two particles are within distance A during [tik-I., tk + I.]. Exactly the same sort
of analysis applied to the Y coordinate yields the relative velocity v1 , an initial intercept time
T., intercept periodicity P,, and window parameter I. Figure 1 illustrates these definitions.

A necessary condition for a shark and fish to be within distance A at time t is that t lie
in some window around an X-coordinate epoch, and in some window around a Y-coordinate
epoch. Let e, and ey be the respective x and y epochs, and let [sI,s2] be the intersection of
the windows around e. and e. At any time s E [31, 82] the squared distance between the
two creatures is

D(s)2 = (vxrs - v,re,) 2 + (vbs - vey)2.

The time of interest is found by solving for s satisfying D(s)2 = A2 , choosing the least real
solution. If no real solution exists the creatures do not come within distance A during time

The algorithm for determining the earliest time at which a shark attacks a given fish
is straightforward. First one checks to see if the shark and fish are initially placed within

5

Test for passing
within distance A Creatures pass I I

within A II

(II) () [I)

Time Line

Figure 1: Time line of coordinate projections

distance A. If so the attack occurs immediately. Otherwise we initialize e. T. and e. = Ts.
Proceedingly iteratively, we check to see if [e, - I., e. + I] n [e - I., e. + Iy] = 0. If the
intersection is nonempLy we test for an attack; if an attack is discovered we are finished. If
the windows do not intersect or intersecting windows fail to produce an attack, we either add
P. to e. or add P. to e., depending on whether e. < eV or e, > e.. The process repeats until
either an attack is discovered, or the epoch values are larger than the simulation termination
time.

In the worst case we will generate all epochs within the simulation time span and not
find an attack. Assuming that the maximum creature velocity is bounded from above, the
computational complexity of determining the first time of an attack is O(T), where T is
the length of the simulation time span. Therefore the overall complexity of determining the
earliest attack time on all fish is O(FST), where F is the number of fish and S is the number
of sharks.

3.3 Parallelization

The TIP algorithm is very easily parallelized. We simply partition the fish evenly among
processors, and ensure that within every time-slice a copy of every shark visits every proces-
sor. No communication of sharks is necessary when the problem size is small enough so that

6

every processor may hold a copy of every shark. When there are so many sharks that one
processor cannot hold a copy of each we divide the sharks into "groups". A shark group has
as many sharks as a single processor can hold. Every processor is given a copy of an entire
shark group. If there are k groups and P processors, processors 0 through P/k - 1 get group
0, processors P/k through 2P/k - 1 get group 1, and so on. Each processor computes the
interactions of all sharks in its current shark group with all its fish. It then sends the shark
group to a processor that has not yet seen a copy of that group. This is accomplished by
having each processor. j send its current group to processor (j + P/k) mod P.

Our implementation on the Intel iPSC/2 permitted as many as 16,382 total creatures to
reside on each processor at a time. Models this large are overwhelmingly dominated by the
computation cost-hours of execution time can be expected. In the face of this the relative
cost of moving sharks around would be trival on problems that require such movement.

4 Performance

We consider the performance of TIP in three ways. First, we use a simple performance model
to show that while TIP's computational complexity cost per simulation unit time on a fixed
domain has order (FS), the complexity of the sectoring approach has order ((FS)2 INs +
FSV-s), where F,S are the numbers of fish and sharks and Ns is the number of sectors.

TIP therefore has an algorithmic advantage over sectoring. Secondly, we demonstrate that
our approach works faster serially than does the sectoring approach. Finally we measure the
parallel performance achieved on a sixteen processor Intel iPSC/2 where each processor is
based on the 80386/80387 chips, has 4Mb of memory. We analyze performance as a function
of problem size, measured by the total number of initially placed creatures and the length T
of the simulation time interval. We find that the number of creatures plays the predominant
role in determining good performance. Speedups in excess of 8 are achieved when as few as
64 sharks and 64 fish are simulated; speedups quickly approach 15 as the number of creatures
is increased.

4.1 Analysis

Complexity results for the sectoring approach can be derived from a simple analytic model.
From this model we discover that if the domain is left constant as the number of sharks and
fishes increases, TIP has a. better asymptotic complexity than does sectoring.

Consider a fixed sized domain where the number of sectors Ns is variable, as are the
numbers of fish F, sharks S, and the simulation time interval T. There are three main
computational costs.

1. Whenever a kill event is processed, we recalculate the sector's next-kill-time;

2. Whenever a new shark comes within attacking range of a sector we compute its next
attack time on every fish presently in the sector;

7

3. Whenever a new fish enters a sector we calculate the minimum attack time from any
shark presently able to attack that sector.

Our performance analysis looks at the costs and frequencies of each of these computations.
For the sake of simplicity assume that all fish and sharks are evenly distributed among

the Ns sectors. First we consider the cost and frequency of the next-kill-time calculation.
As Ns increases the number of fish in a sector decreases as F/Ns, and the number of sharks
decreases as S/Ns. The next-kill-time calculation would seem then to be proportional to
FS/N , however, for large enough Ns the calculation involves more than SINs sharks. Any
shark within attacking range A of a sector must be considered; the domain within distance
A of a sector has an area bounded below by 7rA 2 . The number of sharks involved in a next-
kill-time calculation is therefore asymptotically proportional to S, giving the calculation
an asymptotic FS/Ns complexity. To analyze the frequency of this computation, view the
simulation from a single shark's stationary frame of reference. Imagine a circle of radius A
drawn around the shark. Whenever any fish enters that circle it is eaten, and somewhere
another next-kill-time calculation occurs. There is a rate AA at which a randomly chosen
fish crosses into a fixed circle of radius A; ignoring depletion effects the ensemble rate at
which any fish enters a given circle is FAA. As there are S sharks, the ensemble rate
of kills (and therefore next-kill-time events) is proportional to FS. One can modify this
argument to include the effects of depleting fish; however, the end complexities are not
altered. Combining the rate (in simulation time) of the next-kill-time calculation and its
cost, we see that the computa:tional complexity per unit simulation time is asymptotically
proportional to (FS)2/Ns.

The second type of computational cost is suffered whenever a shark comes within attack
range of a sector. The perimeter of the attack zone around a sector is at least 27rA long;
therefore the rate at which sharks cross into a given sector's attack zone is asymptotically
proportional to S (again a consequence of the domain having fixed size). The calculation is
linear in the number of fish in the sector: F/Ns. There are Ns sectors where this calcula-
tion occurs. Therefore, the computational complexity per unit simulation time due to this
calculation is asymptotically proportional to (FS).

The third type of computational cost is suffered whenever a fish crosses into a sector.
One must compute the minimal attack time on that fish from any shark able to attack the
sector. This cost is linear in the number of sharks attacking the sector, a number which is
proportional to S. The frequency of this computation is the frequency of fish crossing the
sector boundary. The length of the sector perimeter is inversely proportional to V-, so
the computation occurs at a given sector at a rate proportional to F/vNV; collectively it
occurs in the simulation at rate Fv'fs-. The computational complexity per unit simulation
time due to this calculation is therefore asymptotically proportional to FSVfN-s.

Combining the costs of all three types of computations we see that the overall computa-
tional cost per unit simulation time is asymptotically proportional to ((FS)2 i.V + FSvNs).
The most efficient sectoring program will adapt the number of sectors to the number of crea-
tures in order to keep the first term low. However, in doing so it increases the second term.
The computational cost per unit simulation time of TIP is proportional only to FS.

8

4.2 Serial Performance

Prior to engaging in any parallelization we sought to determine whether TIP was in fact an
efficient solution to the problem (at the time we had not yet done tbe complexity analysis).
The most straightforward means was to compare serial versions of TIP and a sectoring
simulation. The results were extremely encouraging. Over a spectrum of problem sizes the
TIP algorithm computed simulation behaviour over twenty times faster than the sectoring
approach. This basic performance differential remained throughout a series of experiments
that sought to determine the best sector sizes for the example problems.

There are a whole range of simulation parameters one might vary; given this overly
large space of possibilities it seemed to us that varying the parameters most likely to affect
performance was a reasonable course of action. The parameters we varied have to do with the
size of the simulation: the numbers of creatures, and the length of the simulation interval.
All other parameters we left constant, and at the values reported in the original Sharks
World paper [1]. These values are given below.

M 65536
A 50
Velocity Uniformly at random from '50,200]
Initial X Uniformly at random
Initial Y Uniformly at random
Direction Uniformly at random
Simulation Duration 2000 time units

All the measurements we report have equal numbers of fish and sharks initially. We studied
problems with total creature populations of 32, 64, 128, 256, 512, 1024, 2048, and 4096. The
table below gives the average finishing times for these simulations as implemented on a Sun
Sparc 1+ workstation.

Creatures Sectoring (secs) TIP (secs) Sectoring/TIP
32 1.2 0.1 12
64 3.1 0.1 31
128 8.8 0.3 29.3
256 29.2 1.3 22.4
512 107 5 21.4
1024 459 21 21.8
2048 1936 83 23.3
4096 8117 334 24.3

Comparison of Sectoring and TIP on Sun Sparcstation 1+

4.3 Parallel Performance

We studied parallel performance on the same set of problems described above, on a sixteen
node Intel iPSC/2 distributed memory multiprocessor. For each parameter setting we exe-
cuted a set of "short" runs with T = 2000 and a set of "long" runs with T = 100,000. Our

9

Serial Timings for Short and Long Runs
2000 -

* Serial Time, Short Run

1750 [Serial Time, Long Run

1500

r 1250
0

4) 1000
C')

750

500

250

32 64 128 256 512 102420484096
Number of Creatures

Figure 2: Timings for long and short runs

implementation will support simulation- with up to 131,072 total creatures. However, the

execution times get quite long, so in order to keep the serial exection times within reason
we limited speedup computations to runs with rather smaller numbers of creatures. The
large problem we have run in parallel required 122 minutes; for this problem F = 16386,
S = 16386, and T = 2000.

Figure 2 plots timings taken from the serial version run on one iPSC/2 node', and Figuire 3

gives the speedups achieved using sixteen processors. Some experimentation suggested that
we use a time slice of At = T/10. The value of "speedup" is not as rigorous as we would

like: ideally one would exhaustively determine the best time-slice for each serial run and use

that in the speedup calculation. In fact, we believe that the cross-over behavior of the short

and long speedup functions is likely due to the non-optimality of the At = T/10 rule--in

particular, the serial timings for long runs and few creatures are probably inflated owing to

this phenomenon. Other caveats include the fact that we did not include initialization time

(which matters little because we could have parallelized it had we spent the time on it), nor

do we include the 10 time required to report the fishes final status.

The parallelization costs which keep TIP from achieving perfect speedup are due to load

'It is interesting to note that there is apparently a factor of five speed differential betwec- a Sparc 1+
and a single iPSC/2 node.

10

Speedups for Short and Long Runs
16-

* Speedup, Short Run

14 ED Speedup, Long Run

12

M. 10

0
8 -a.

6 /

4/

2

32 64 128 256 512 102420484096

Number of Creatures
Figure 3: TIP Speedups for long and short runs

imbalance. Our tricks for reducing the number of TIP inner loop iterations for a given fish
cause variability in each fishes processing time, as does the fact that the forward projection
of a fish and shark can be terminated with the first discovered intersection. Our timings
wait for all processors to synchronize globally, thereby waiting for the processor with the
heaviest load to complete. However, this degradation will decrease as the number of fish
increases, due to central limit theorem effects of reducing the load variance in relationship
to the mean.

5 Conclusions

The parallelization of discrete-event simulations offers many challenges. We examined some
of those in the context of a particular model, the Sharks World simulation. We offer two
conclusions. First, knowledge and exploitation of lookahead in the simulation model can lead
to excellent performance. Our search for lookahead in Sharks World led us to a completely
different solution approach. The advantages of the approach are manifold: on a serial work-
station problems are solved over twenty times faster than with the "usual" discrete-event
approach; the approach is easily parallelized and achieves high speedups. The second conclu-
sion is that excellent performance achieved by exploiting lookahead can be easily thwarted

11

by relatively minor changes in problem specification. Any modification to the model rules
that affects lookahead exploitation may require a great deal of modification to the solution
approach. This fundamental problem will be suffered by any conservative synchronization
method whose performance depends on lookahead. To the extent that one can draw general
conclusions from this specific example, we conjecture that optimistic synchronization mecha-
nisms may be better suited than conservative methods for a general discrete-event simulator;
on the other hand, a specific simulation may have very good lookahead properties that can
be efficiently exploited by a conservative mechanism.

References

[1] D. Conklin, J. Cleary, and B. Unger. The sharks world (a study in distributed simulation
design). In Distributed Simulation 1990, volume 22, pages 157-160. SCS Simulation
Series, 1990.

[2] P. Hontalas et al. Performance of the colliding pucks simulation on the time warp op-
erating system. In Distributed Simulation 1989, volume 21, pages 3-7. SCS Simulation
Series, 1989.

[3] D.M. Nicol. Parallel discrete-event simulation of FCFS stochastic queueing networks.
SIGPLAN Notices, 23(9):124-137, September 1988.

[4] D.M. Nicol. Performance bounds on parallel self-initiating discrete event simulations.
A CAI Trans. on Modeling and Computer Simulation, 1(1), 1991. To appear. Also available
as Technical Report 90-21 from ICASE, M.S. 132C, NASA Langley Research Center,
Hampton, VA, 23665.

[5] D.M. Nicol and P.F. Reynolds, Jr. Problem oriented protocol design. In Proceedings of
the 1984 Winter Simulation Conference, pages 471-474, Dallas, December 1984.

12

NASA Report Documentation Page
1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-187440
ICASE Report No. 90-67

4. Title and Subtitle 5. Report Date

A "CONSERVATIVE" APPROACH TO PARALLELIZING THE SHARKS October 1990

WORLD SIMULATION 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

David N. Nicol 90-67

Scott E. Riffe 10. Work Unit No.

9. Performing Organization Name and Address 505-90-21-01
Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering
Mail Stop 132C, NASA Langley Research Center NASI-18605
Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Contractor Report

Langley Research Center 14. Sponsoring Agency Code

Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: To appear 1990 Winter Simulation
Richard W. Barnwell Conference Proceedings

Final Report
16. Abstract

This paper describes how we parallelized a benchmark problem for parallel sim-
ulation, the Sharks World. The solution we describe is conservative, in the sense
that no state information is saved, and no "rollbacks" occur. Our approach illus-
trates both the principal advantage and principal disadvantage of conservative para-
llel simulation. The advantage is that by exploiting lookahead we find an approach
that dramatically improves the serial execution time, and also achieves excellent
speedups. The disadvantage is that if the model rules are changed in such a way
that the lookahead is destroyed, it is difficult to modify the solution to accommo-
date the changes.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

parallel simulation, synchronization, 61 - Computer Programming and Software
parallel computing

Unclassified - Unlimited
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21 No. of pages 22. Price
Unclassified Unclassified 14 A03

NASA FORM 1626 OCT 86 NASA-UngIey. IM

